SoyBase Follow us on Twitter @SoyBaseDatabase
Integrating Genetics and Genomics to Advance Soybean Research



Reference Report for JRS20180605.2
Title:Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height
Authors:Zhang, X., Wang, W., Guo, N., Zhang, Y., Bu, Y., Zhao, J., Xing, H.
Source:BMC Genomics 2018, 19:226
Abstract:Background: Plant height (PH) is an important agronomic trait and is closely related to yield in soybean [Glycine max (L.) Merr.]. Previous studies have identified many QTLs for PH. Due to the complex genetic background of PH in soybean, there are few reports on its fine mapping. Results: In this study, we used a mapping population derived from a cross between a chromosome segment substitution line CSSL3228 (donor N24852 (G. Soja), a receptor NN1138Ð2 (G. max)) and NN1138Ð2 to fine map a wild soybean allele of greater PH by QTL-seq and linkage mapping. We identified a QTL for PH in a 1.73 Mb region on soybean chromosome 13 through QTL-seq, which was confirmed by SSR marker-based classical QTL mapping in the mapping population. The linkage analysis showed that the QTLs of PH were located between the SSR markers BARCSOYSSR_13_1417 and BARCSOYSSR_13_1421 on chromosome 13, and the physical distance was 69.3 kb. RT-PCR and sequence analysis of possible candidate genes showed that Glyma.13 g249400 revealed significantly higher expression in higher PH genotypes, and the gene existed 6 differences in the amino acids encoding between the two parents. Conclusions: Data presented here provide support for Glyma.13 g249400 as a possible candidate genes for higher PH in wild soybean line N24852.






Funded by the USDA-ARS. Developed by the USDA-ARS SoyBase and Legume Clade Database group at the Iowa State University, Ames, IA
 
USDA Logo
Iowa State University Logo