SoyBase Follow us on Twitter @SoyBaseDatabase
Integrating Genetics and Genomics to Advance Soybean Research



Reference Report for SoyBase12021200
Title:Genetic and Sequence Analysis of Markers Tightly Linked to the Soybean mosaic virus Resistance Gene, Rsv3
Authors:Jeong, S.C., Kristipati, S., Hayes, A.J., Maughan, P.J., Noffsinger, S.L., Gunduz, I., Buss, G.R., Saghai-Maroof, M.A.
Source:Crop Sci. 2002, 42(1):265-270
Abstract:Soybean mosaic virus (SMV) is a major viral pathogen, affecting soybean [Glycine max (L.) Merr.] production worldwide. The Rsv3 gene of soybean confers resistance to three of the most virulent strains (G5–G7) of SMV. The objectives of this study were to map Rsv3 and develop polymerase chain reaction (PCR) based markers for marker-assisted selection (MAS) purposes. Disease-response data were collected from two F2 mapping populations, L29 (Rsv3) x Lee68 (rsv3) and Tousan 140 (Rsv3) x Lee68 (rsv3). Bulk segregant analysis based on amplified fragment length polymorphism (AFLP) markers demonstrated that the Rsv3 locus maps to the soybean molecular linkage group (MLG) B2 between restriction fragment length polymorphism (RFLP) markers A519 and Mng247. These two tightly linked RFLP markers were converted to PCR-based markers to expedite MAS. Sequence analysis of the Mng247 genomic region revealed similarity to the consensus sequence of a leucine-rich repeat (LRR) characteristic of the extracellular LRR class of disease resistance genes. Results from this study will be useful in pyramiding viral resistance genes and in cloning the Rsv3 gene.






Funded by the USDA-ARS. Developed by the USDA-ARS SoyBase and Legume Clade Database group at the Iowa State University, Ames, IA
 
USDA Logo
Iowa State University Logo